If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2=720
We move all terms to the left:
36x^2-(720)=0
a = 36; b = 0; c = -720;
Δ = b2-4ac
Δ = 02-4·36·(-720)
Δ = 103680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{103680}=\sqrt{20736*5}=\sqrt{20736}*\sqrt{5}=144\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144\sqrt{5}}{2*36}=\frac{0-144\sqrt{5}}{72} =-\frac{144\sqrt{5}}{72} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144\sqrt{5}}{2*36}=\frac{0+144\sqrt{5}}{72} =\frac{144\sqrt{5}}{72} =2\sqrt{5} $
| 0.24/a=3/96 | | 7x-4+6x-4+5x-8=180 | | x-2/8=1/2 | | c=5/9(95000000-32) | | c=5/9(9500000-32) | | c=5/9(950-32) | | 3x-5+2x+x+23=180 | | (X+3)(6-x)=(6-x)(x-1) | | 0.1x-7=0+0.9x | | 7a–4=38 | | 4x+4x+4x+4x=128 | | 5d+2(2-d)=3(1 | | 2y+y-1+5=180 | | -75-x=11 | | 1/5(2f−3)+1/6(f−4)+2/15=0 | | x^2-4x-0=0 | | 40=x+53 | | 8x+12-5x-3+x=4+7x+6-x-1-3x | | 6x/4x=10 | | 144=x+85 | | 9y²-9y-70=0 | | x-8=22+4x+30 | | 6x-1=15-x | | (4*x)-7=10 | | (145+3K)/(88+k)=2 | | 30+5x=55 | | 7x+2-(3x+5x)=17 | | 26x+19/15=14x-13/3 | | 6f+7−3f=1/3(6f-18) | | 4y-6y-y= | | -1/2(4x-6)=-2x-3 | | −8(6x+12)=−32x−24 |